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OF A FLEXIBLE MRl?MNE TO ELEVATOR

A FREQUENCY RANGE INCLUDING

STRUCTURAL MOIIES

By Henry A. Cole, Jr., and EuCUd

SUMMARY

CONTROL OVER

C. Eollewm

The longitudinal frequency response of a large fle~ble swept-wing
airplane, as determined from its measured response to eleva~r @ses ~
is presented over the operating Mach nuniberrange at altitudes from 1~,000

. to 35,000 feet. Response quantities for the nose, centir of gratitYj ~ng
tip, md tail are shown for frequencies from the airplane short-~riod
made to the fuselage first-beatig mode.*

Comparisons are made between the measured responses and res~nses
predicted by dynadcal analyses with up to three structural degrees of
freedom. The forms of transfer functions needed to simulate the respanse
over several frequency bands are shown. The dynamic respmse measured in
flight is interpreted in terms of lines of low response, and comparisons
are made with predicted lines of low response and node lines predicted by
free-free analysis and measured in ground tibration tests.

INTRODUCTION

The mass distribution and structural flexibility of some recent
high-aspect-ratio swept-wing bombers and transports has resulted in air-
plaues with relatively low frequency structural-modes. Consequently, the
response of these airplsmes to disturbances such as control inputs and
gust loads consists of large structural deflections as well as motions
of the airplane as a whole. Various parts of the airplane, then, are
subjected to widely different accelerations. These accelerations not
only affect the local structural stress, but *O fifluen= the owration
of mechanical and electronic equipment. When the airplane is equipped

. with an automatic control system, the local dynamic response to control
motion is of particular significance because structural vibration siguals

.

-.



2 NACATN 4147

which are fed into the system by pickups (accelerometers,rate gyros, etc.)
4

may either cause the system to become unstable or limit the &in allowable
for system stability (refs. 1, 2, and 3). 9

In order to provide information on dynamic characteristics of flexible
airplanes, the NACA has been evaluating measured and predicted dynamic
responses of a Boeing B-47 ai?qil.aneto control surface motions. The
dynamic response at frequencies below the structural mode frequencies
has been reported in references 1, 4, and ~. Also, a limited amwnt of
measured responses at structural mode frequencies was presented in these
re~rts, but the analysis was liml.tedto frequencies below the natural
frequencies of structural modes. In the present report, measured dynamic
responses to elevator control at structural mode frequencies are presented
for a wide raage of flight conditions, and an snalysis is developed which
includes three structural.mades, wing first bending, wing first torsion,
and fuselage first bending. Other malyses including structural modes
have been presented in references 6, 7, and 8.

—

In the first part of the report, the measmd responses of widely
separated points on the airplane are examined for effects of altitude,
Mach number, and dynamic pressure. In the second part, equations of
motion are developed for three structural degrees of freedom and two air-
plane degrees of freedom. Finally, comparisons are made between measured 0.

and predicted structural.response characteristics md results are inter-
—

preted to locate optimum points for automatic control system pickups. m

Data used in this report were obtained from flight tests conducted
at the High Speed Fld.ght Station of the NACA and the analysis and reduc-
tion of data was a cooperative effort of HSFS-aud Ames Aeronautical
Laboratory.

Symbols used in this report are defined in Appendix A.

TEST EQUIFMENT

The test airplane was a Boeing B-47A with General Electric J47-GE-23
turbojets and with wing vortex generators as showm in figure 1. Wing
deflections were measured by an optigraph mounted on top of the fuselage
which recorded the movement of 100-watt target lights. Elevator angle
was measured by an NACA resistance-type control-positionindicator. The
pitching velocity at center of ~atity was measured by a ma~etically
damped NACA pitch turnmeter, the acceleration at the center of gravitiJ
and tail by NACA air-damped accelerometers, and the acceleration at the
nose and wing tip by Statham 13near accelerometers. The locations of the
instruments used in this report are indicated in figure 2.

.

.
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MEASURED FREQUENCY RESPONSE

Measured frequency responses were selected which would define the
complete motion of the airp~e over a wide range of fMght conditions.
The meaeured qumtities are pitching velocity at the center of gravity,
acceleration at the center of gravity, acceleration at the nose, accel-
eration at the wing tip, and acceleration at the tail. Although these
few points are not sufficient to define structural deformations in detail,
the r.wstsignificant deflections which occur in the frequency range of
interest are of the first-bending type and, hence, the principal deflec-
tions of in-between pints can be approximated by use of the assumed
cantilever modes which are introduced later in the analysis. The flight
conditions covered are plotted in figure 3 and are listed in table I.

Frequency response data were obtained by the “pulse technique” which
is described in detail in reference 4. Briefly, in this method, the pilot
applies a pulse force to the controls and the resulting motions are
recorded. The time histories of the elevator angle input and the output
respnse quantity are tram formed to frequency form by the Fourier inte-
gral. Corrections are made for the dynamic respnse of instruments and
frequency response is cut off at frequencies where the level fa12.sbelow.
values required for accurate results.

0 In order to document the response and to show how the response varies
with different parameters held constant, frequency responses are plotted
with altitude held constant in figures 4, 5, and 6, with the aeroelastic
parmneter q/P held constant in figure 7, and with Mach nunber held
constant in figure 8. Discussion of these results follows.

Frequency Response At Constant Altitude

The frequency response is presented for three altitudes, 15,0~ feet
in figure 4, 25,0w feet in figure 5, and 35,000 feet in figure 6. Cer-
tain trends are apparent from these figures. The peak of the short-period
mode at a frequency from 1 to 4 radians per second increases in amplitude
and occurs at higher frequencies as Mach number is increased. ThiS trend
is +lained in reference 4.

The peak in the acceleration responses due to the wing first-bending
mode (approximately9 radisns/sec), which is mst apparent in figures 4(d),
5(d), and 6(d), decreases with increasing Mach number. M.so, the valley
or dip in the response which follows the short-period mode peak shifts to
higher frequencies as l&ch number is increased.

.
The response is very complex at frequencies higher than the wing

first-bending made, partly because of inaccuracies in the data by the pulse
. technique ud partly because of many titrations, insig@ficant for present
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~~oses~ which are ~icked UP bY the accele~meters~ However) the P*IS
which reach fairly hi@ amplitudes are considered to be accurate indicat-
ions of structural modes md only pesks which rise above lQg’s per radian <–

on acceleration responses will be considered to be sigp.i.ficanthere.

The next significant peak appears at frequencies from 14 to 17 radians
per second. On the basis of ground vibration tests (ref. 9) and analysis
(ref. 10), this mode is believed to be of a wing second-bending type
coupled with body translation and pitch.

A very definite high peak is in evidence on all of the responses near
a frequency of 30 radians per second, which, according to ground vibration
tests, is a mode consisting primarily of fuselage first bending. Unfor-
tunately, the frequency content of the pulse inputs -S not high enough
to define this peak clearly in every case, but the peak amplitudes appear
to increase with Mach nwber and tend to become less severe as altitude is
increased.

A small blip or side band occurs in many cases at a high level of
amplitude from 20 to 25 radians per second on the acceleration responses
of the wing tip. This is believed to be due to the wing first-torsion
mode as indicated by ground vibration tests and snalysis. Because of the
very close proximity of the wing first-torsion male to the fuselage first-

*

bending mode it is difficult to note sny separate effects.
*

Frequency Response With Aeroel.asti.cParameter q/$ Constant

Frequency responses with aeroelastic parameter, q/$, equal to 280
poundsper square foot are plotted in figure 7 for the range of test
altitudes as indicated in figure 3. All of the responses fall fairly
close together in both amplitude and phase. The differences which do
occur, near the short-period mode frequency, are explained by the pseudo-

—

static theory (refs. 1 and 4) when differences in weight are included.
The results in reference 1 show that the steady-state gain of the ratio
of acceleration to elevator angle and the damping ratio of the short-
period mode both decrease with an increase in altitude at constant q/13.
These trends have op~site effects on the amplitude of the frequency
response curves and tend to cancel each other when the frequency is raised
to the short-period mode frequency. Howeverj with the exception of the
steady-state gain, it appears that the response could be considered essen-
tially unchanged for some practical purposes when q/j3 is held constant
and other parameters are varied.

.

.
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Frequency Response At Constant Mach Number

5

Curves for a Mach nuniierof 0.7 (fig. 3) are
As altitude is decreased at constant Mach number,
eter q/P increases sad,therefore, the frequency
mode peek and the general level of the amp~tudes

The pesk of the wing first-bending mde at a

plotted in figure 8.
the aeroelastic Pram-
of the short-~eriod
increase.

frequency of 8 ta 9
radians per second which is seen nmst clearly in figure 8(d) tends to
disa~ear as q/P is increased. Although peaks are not well defined
at higher frequencies, an o-site trend appears for the modes at 16
radians per second and 30 radians per second. These peaks tend to
increase with q/P. It should be noted here that ti forced oscillation
tests the height of the pesk in the frequency response depends on the
manner in which the driving force is coupled to the mode as well as on
the damping of the unforced mode itself. Hence, in the interpretation
of pesk-amplitude trends, consideration should be given b changes in
the coupling of the modes with the forcing as well as to changes in— — —
aerodynadc damping and spring forces.

k
ANALYTICAL METHODS FOR PREDICTION

*

OF DYNAMIC RESPONSE

b the previous section, measured dynamic responses of the airplane
‘werepresented to document the response snd to show the effects of various
parameters. Of course, it is desirable to be able to predict these
respnse characteristics for use in rational desi~ of the airplane and
its control system. In the following section, methods of analysis
including structural degrees of freedom are &velo&d.

Equations of Mtion

Equations of mtion of a fl~bl..e airplane for frequencies below the
structural mode frequencies were developed in reference 4. Also, equations
of motion including structural.modes have been presented in references 6,
7, and 8. ~ the analysis here, the equations are developed for two air-
plane degrees of freedom and three structru?aldegrees of freedom in a fomn
which lends itself to digital machine computing or hand calculations. The
equations of motion of the airpl~e may be simply stated by Lagrange’s
equation:

(1)
—
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where KE i.sthe kinetic energy, PE
generalized coordinates, and Qi the

NACA TN 4147

●

the potential energy, qi the
generalized forces. To completely .-

describe the complex dynamic system of a flexible airplane, an infinite
number of coordinates (qi) are needed. However, in mst practical prob-
lems, the motions of the airplane occur within a finite frequency range,
and these motions can be adequately described with a finite number of
coordinates. The trick is to select the minimum number of coordinates
which are needed for the frequency range of interest.

Selection of coordinates.- The mode of deformation of the structure
at an instant of time represents a condition in which the structural
spring forces are in equilibrium with the combined forces of all the

—.

loads. The individual loads, which include inertial, aerodynamic, and
structural damping loads due to motions of the airplane as a whole and
structural deflections, vary in accordance with the frequency range con-
sidered. At low frequencies, loads due to motions of the airplane as a
whole are o.fprimary importance, while at higher frequencies, loads due
to motion of the structure are of primary importance. Since the total
deflection results from various combinations of the individual loads, an
insight to the coordinates needed to define the total deflection is gained
if the deflections due to the individual load& are known.

To study the low-frequcy range, pseudostatlc deformations of the
wing resulting from loads due to a, ~, n, snd~ were calculated through
use of aerodynamic and structural influence coefficients (see Appendixes B
snd C). The deflection of the wing from the reference plane shown in fig-
ure 9 is presented in figure 10 in components of bending of the elastic
axis (38-percent chord) and streamwise twist. All of the curves are of
the wing first-bending type with various amounts of twist of the ting
first-torsion type. Although fuselage bending is not shown on the figure,
it occurs in various amounts in the same direction as the wing bending.

At structural mode frequencies, the inertial forces due to structural
motion are apt to be of greatest importance. The individul effect of
these inertial forces was evaluated by calculating the vacuum tibration
modes of the airplane as described in Appendix B. These modes are plotted
about the space axes in figure Xl.,but the deflections will be discussed-
as viewed from the deflection reference plane on the fuselage.

The dominant mode is of the wing first-bending mode type. The first
subdominant mode is primarily wing first torsion with some wing second
bending. The second subdotinent mode is primarily fuselage bending with
a curve of wing first-bending type in the wing. At this frequency it is
noted that there is little or no bending of the inboard prtion of the
wing which indicates a component of wing second bending is present.

The individual deformations in figures 10 and 11 indicate the
principle deformations to be expected for frequencies up to 25 radians
per second. In order to satisfy both the conditions of the pseudostatic
frequency range (various amounts of wing tors~on and fuselage bending

.
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occurring with wing
(various amounts of

7

first bending) and the structural mode frequency range
fuselage bending with different types of wing bending

curves), it is necessary to break up the deflection curves into components.
This was done by selecting ting first bending, fuselage first bending, and
wing first torsion for degrees of freedom (fig. U and table II). Although
wing second bending is evident in some deflections, it was neglected to
simplify the analysis. It should be noted that the deflection coordinates
in figure I-2are deflections relative to the deflection reference plane in
figure 9 which represent the structural deflections which an observer would
see from the rigid airplme center-of-gravity location. Also, coordinates
of displacement of rigid airplane center-of-gravity location and pitch
angle of the deflection reference plane were included to take into accomrt
motions of the airplane as a whole.

There are other combinations of coordinates which could be used to
describe these motions, but the component deflection bresklown used here
has many advantages. The equations are put in a form which allows direct
application of the pseudostatic principle in any of the structural degrees
of freedom. The calculation of generalized forces is simplified. The
structural degrees of fTeedom correspond to deflections
on the airplane and, hence, correspond to the optigraph

~

APPLICATION OF LAGRANGE‘S EQUATION

seen by an observer
measurements.

By means of equation (1) smd coordinates, displacement of cater of
gmvity (Zcg), pitch angle of center of gravity (9), wing first bending

(Y), ~e~ge first binding (h), and wing first torsion (Z), the eqpations
of motion as derived in Appendix C are:
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1
Wt3#i

K=Z~bi + ~ K@nibixi o KlZ~bi2 o

K=Zmici K=Z~ci~ K=Z~aici o K#~ci2
1

D+

(2) -
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Symbols are defined in Appendix A. Aerodynamic coefficient terms

-
(e.g., ~~ai) were evaluated from aerodynamic influence coefficients

which were based OD steady-state Mfting we theory. The aerodynamic
influence coefficients were further modified to include weighting terms
so that the summations performed are quadrature solutions of the integral
of the product of the spanwise lift function and the deflection function.

Equation (2) may be solved for transfer functions Zcg/~, @2 YIEY
h/E, and z~~. From these solutions the motion of =y point on the air-
plane may be determined. The acceleration at a point (i) for exsmple is
given by:

(3)

.

.

.

Equation (2) may be easily extended to ticlude more degrees of
freedom. Coordinates should be selected which are normal or nearly nor-
mal to avoid ill-conditioned equations. In other words, the cross terms
such ~S ~iS-j-Ci should be approximately zero. If a suitable digital
computing machine is available, then a large number of normal coordinates
could be included in the equations of motion. However, for preliminary
desigQ use and for interpretation of the dyusmi.cresponse, the simplifi-
cations attendant with a few degrees of freedom are desirable.

The adequacy of the degrees of freedom selected can always be
checked at a given frequency by comparing the deflections yredicted by
the equations with the deflections computed from the applied loads
(Appendix C).

The Pseudostatic

When only the dynamic response below
needed, equation (2) may be simplified by
which occur with the variables y, h, and

Method

structural mode frequencies is
ekbdnating terms in & and D
z. This assumes that the iner-

tial and dampfig forces arising fkm- structural motion are negligible.
This is sometimes called the pseudostatic method because only the spring
terms of the structural modes are included, but all of the dyasmic effects
of the rigid body degrees of freedom are included. Equation (2) may be
written in matrix form as follows:

~cg
e

Y
h

z

(4)
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[1in which the elements of Cij are quadratic ~olynomials in D, that is,

‘ll = 6.”+%
& + ~ D. Equation (4) may be partitioned into

eqpations:

[ IICll %2 =Cg

C21 C22 e

and

{1zCg
+

@

K1W&Z~ai2+

%yi=i

o

o

K1~h2Z@i2+

1WJ-IIc%.Ci2+

~LZici

Y

h

1

(5)

In the pseudostatic method,
n

equation (6) is solved for h and
7

substituted in eqyation (~). The resulting equation then is only a func-
tion of Zca, e, and 5. The important coni&tion in using equations (5)
snd (6) for-pseudostatic calculations is that

Wna2~q2+ o ZCL@-1

%yLai

o K=~b2~ibi2+ o

“Lhibi

%yici o K=~c2Xmici2+

“Llici

+0 (7)
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for this is the condition for existence of the inversion used in solving

{}
equation (6) for $ . The determinant, eqwtion (7), becomes very small

and approaches zero if two similar Males are selected as degrees of free-
dom. The best conditioning of equation (6) is obtained when modes are
selected which are normal (~~~ = O). The pseudostatic snalysis, as

used in reference 4, used each of the control pints on the wing as a sep-
arate degree of freedom. All of these degrees of freedom could be used
in the dyuamical analysis by expaading equations (2) to include more
degrees of freedom, but this procedure is usually impractical.

Pseudostatic method techniques can aho be applied ta the equations
which include dynamic effects of structural modes. la these cases, the
modes in the frequency range of interest are included as Qrmmic degrees
of freedom, and the higher frequency modes as pseudostatic. For example,
if the frequency response were needed throu@ the wing first-bending mode
frequency, then only terms in ~ and D associated with variables h
and Z would be neglected.

. COMPARISON OF MEASURED AND PREDICTED RESPONSES

h the previous two sections, measured dynamic responses were

presented to document the dynamic response for systems design, smd ana-
lytical means of prediction of the dynamic response were developed. Com-
parison of the measured and predicted responses will now be presented to
show how well the analysis represents the measured frequency response
characteristics of the airplane (i.e., which forms of transfer functions
are needed to simulate the dyuamic response in systems desi~) and how
well the node lines or points of low response can be predicted by analysis
or ground tibration tests.

Frequency Res~nse Curves and Related
Trmsfer Function Forms

Near the short-period frequency.- If the response is only needed at
frequencies near the airplane short-period mode frequency, then the
pseudostatic method should protide adequate predictions. -W order to
verify this, measured respcnses of wing tip deflection at several alti-
tudes are compared with the predicted response in figure 13. Wing tip
deflection is used here for comparison because it is the most direct and
accurate measurement of aeroelastic effects on the airplane. From equa-
tion (6), solutions of y and t are combined in accordance with equa-
tion (C33) in Appendix C to form the transfer function for wing tip
deflection which has the form

.
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where the numerical.values

( 2KD+1+= )~ D2
%2 2
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(8)

for ~ and w a= &tern@ned from the emations
Of motion for a given flight con~tion.– me subscripts 1, 2, . . . ‘are
used to indicate that the ~ and ~ are different in the second-order
transfer function terms.

The forms of transfer functions of other quantities 6/5, n/8 are
the same as for a rigid airplane and are given in reference 4. Solutions
in the form of equation (8)were obtained for flight conditions at a Mach
number of 0.7 snd altitudes of 35,(X)0and 15,000 feet for the airplane
weight configuration. These were then plotted in frequency response form
through use of dynamic response templates presented @ reference U.. The
frequency response
in eqyation (8).

The agreement
quite good up to a
ties, the response
bending mode which
of 35,000feet.

Includina the

function may also be obtained by substituting iu for D

between experiment and the pseudostatic predictions is
frequency of 4 radisms per second. At higher frequen-

.

rises sharply in a dynamic peak due to the wing first-
is especially noticeable at the hi~er altitude .

short-period smd wing first-bending frequencies.- In
order to take account of the dynamic effects of the lowest structural
mode the ting first-bending mo& needs to be included as a dynamic degree
of freedom in the equations of motion. This is done by only neglecting
the ~ andD terms associated with h and 1 in equation (2). The
transfer function for z/b then tskes on the form:

(9)

Responses predictedby this method are also shown in figure 13, and
it may be seen that the dynamic response peaks agree well with the experi-
mental ones. The deflection check, as described in Appendix C, indicated
that the selection of coordinates was excellent for describing the struc-
tural deflections in this frequency range (up to 15 radisns per second).
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h interestingrestit in figure 13 is the disappearance of the large
dyusmic response pesk of the wing first-bending mode at an altitude of
15,000 feet. When the airplane undergoes forced oscillation, there is a
frequency for which the generalized forces of inertial.loads and aerody-
namic loads nearly cmcel. This frequency is marked by the valley in the
frequency response which occurs around ~ radians per second at an altitude
of 35,000 feet. At 1~,OoO feet, this condition occurs at nearlY the s-
frequency as the wing first-bending mode frequency sud hence little or no
driving force is transmitted to the wing and the dynamic response peak
remains small.

The forms of other transfer functions for dynamic y ad pseudostatic
h and 2 are:

and

(U)

~cluding the short-period, wing first-bending, and fuselage first-
bending frequencies.- The predicted response may be extended to cover a
wider range of frequencies by including another dynad.c degree of freedom.
lh selecttig additional degrees of freedom, consideration must be given ta
the importance of the modes on the over-all response. b looking at the
free-free modes in figure 11, it may be seen that the first subdomin~t
mode consists primarily of deflection of the fiboard nacdl.e mass whereas
the second subdotisnt mode consists primarily of deflection of the tail
mass. Fuselage bending was selected as the ne= most importszrtdegree of
freedom because it would be expected to have the largest influence on
local fuselage responses.

Because of the small.deflections involved at the hi@er frequencies,
structural deflection measmments, particularly of the fuselage, were
not of sufficient accuracy to use for comparison with theory. However, the
accelerometer measurements were of sufficient accuracy over the entire
frequency razlgeof interest, ad hence will be used for comparison here.
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Equation (2) was solved for ~, Zcg, y, m-d h with the torsion-made
variable 2 neglected. Acceleration responses at the nose, center of
gravity, wing tip, end tail were obtained through use of eqution (3) and
are plotted in figure 14. The form of these a~ce-lerationresponses is

(X2)

and the form of pitching velocity at the center of gravity is

($.
‘5-

(13)
.

.

Comparable measured acceleration responses are shown in figure 15.
The portion of the measured wing-tip res~nse has been deleted between
frequencies of U and 25 radians per second because the scatter in this
region obscures the other response curves. It may be seen that the pat-
tern of predicted (fig. 14) and measured responses (fig. 15) are very
similar in both amplitude and phase sngle which indicates that the equa-
tions are of the correct form. Hence, transfer functions of the form of
equations (12) and (13) should be adequate for simulation of the dynamic
response over this frequency rsmge.

A closer comparison of the responses can be obtained by plotting the
accelerations at peaks of the various modes on an amplitude-phase plane.
Discussion of the results at the wing first-bending mode smd the fuselage
first-bending mode peeks fo13.ows.When values are compared, it should be
kept in mind that errors should be evaluated on the basis of absolute
differences rather than percentages because amplitude ratios which are
small snd phase angles at points with a steep slope are difficult to —

measure accurately.

The smplitude and phase angle of the various accelerations at the
wing first-bending mode frequency are plotted in figure 16. The agree- .
ment between measured and predicted values is”considered to be good. The
deflection check of Appendix C is shown in figure 17. The deflections

.
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in phase with the wing tip are plotted m bending and streamwise twist
components for comparison. The close agreement indicates that the degrees
of freedom were adequate to describe the mode shape.

Comparison of the peak amplitudes at the fuselage first-bending mode
frequency near 30 radians per second in figures lh and 15 shows a large
difference between measured and predicted vslues. However, in both cases
the damping ratio is very low s.ndthe height of this peak is extremely
sensitive to small changes in damping ratio. Physically this means that
the erect values of the peak are dependent on very small forces which are
beyond the accuracy of the smalysis. It is quite possible that better
agreement would be obtained if structural damping and unsteady lift forces
were included in the analysis. However, since the structural and mass
characteristics of the fuselage are not known accurately (see A~endix B),
it is felt that further refinements would be futile umless structural
properties of the fuselage were measured.

~ order to compare the modes of deformation, the accelerations at
the fuselage first-bending nmde frequency were normalized ta the td.1
acceleration and are plotted in figure 18. It may be seen that there are
phase-angle differences between measured sad predicted values as high
as 45° ~d that the relative wing-ttp amp~tude measured is much larger

. than predicted. Hence, the coordinates of wing first bending and fuselage
first bending are not adequate to define the motion tith precision at the
peak frequency, but are close enough to give the correct general form of
the frequenty response over the entire rsnge under consideration. For an
analog simulation, the damping of the fuselage first-bending mode would
have to be increased h match fJi@t values~

The deflection check of Appendix C is plotted in figure 19. Here,
the deflections in phase with tail deflection are plotted in wing bending
and streamwise twist compnents. It may be seen that the applied loads
in this condition cause much hi@er wing-tip deflections and more wing
torsion thsm is predicted with simple wing first bending and fuselage
first bending. A solution of the complete eqpations with dynamic y, h,
and z was also made and the results indicated that the correct amount of
torsion was obtained, but that wing-tip deflection was still too small.
As seen in figure 17, the experimatal values also indicate hi@er wing
deflections than predicted by the simple wing-bending analysis. A wing
first-bending type curve with more curvature near the root cotid be used
in place of the wing first-bending curve used in the analysis, but this
would compromise the results in the low-frequenty range. If a wing first-
bending curve with more curvature near the root were included as an addi-
tional degree of freedom, then the equations would probably be i3l-
conditioned. Hence, it appears that a wing secoad-bending degree of
freedom would have to be added to predict the ting deflections accurately
over the frequency range considered here.

.
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Node Lines and lilnesof Low Response
r

.

In many applications the adver~e effects of a structural mode can be
eliminated by locating control system elements on node”lines,”“tha”tis, “-
points of zero displacement. Also the stability of a system or the effec-
tiveness of a mass balance weight of%n de&n@ on which sib of the node
line the pickup or mass is located. The existence of node llnes reqtires
that all points on the structure vibrate either in phase or 1800 out of
phase. This condition is satisfied in the free-free analysis and approxi-
mately in ground vibration tests.

Wing first-bending mode.- It may be seen in figure 16 that the nose,
center of gravity, wing tip, and tail accelerations @ not fall on a
straight line through the origin, but are close enough to determine points
of low respnse in fligjht. Through the use of the assumed fuselage mode
of deformation, parabolic bending to the rear of the center of gratity,
points of low response on the fuselage were calculated for the measured
and predicted values in figure 16 and are shown in figure 20 together
with node lines from ground vibration tests fid from the free-free analysis.

..

The fuselage node lines or lines of low response from flight, free-
free analysis, and dynamical analysis are in approximate agreement, but a

the ground vibration values obtained from refegence 9 are considerably

—

farther to the rear. Hence, support of the ti_rpl=e on air bags is not
representative of the mmner in which the airplane is supported in fli~t ‘-- ‘.”
at this freqyency. A possible means of supporting the airplane on the
ground to simulate coupling effects of the short-period flight mode is
suggested by the moment of inertia tests described in reference 10. The

—

spring and lmife edges support the airplsme in a manner which very nearly
correspon&._to the mechanics of the short-period mode at frequencies near

—.

the wing first-bendingmode frequency. As a result, the oscillations of
the airplane on the moment-of-inertia rig correspond very nearly to those
which occur in flight, except for the phase lag of the wing which results

—

from aerodynamic damping forces in flight.

Fuselage first-bendingmode.- From figure 18 it may be seen that the
predicted accelerations at the nose, center of gravity, and tail fall
nearly in a strsight line, and since nose and tail val&s are 18OO out of
phase with the center of gravity, two node ldnes exist on the fuselage.
The experimental points do not fall on a straight line, but are close
enough to locate points of low response. The-node lines are shown in
figure 21 ad it maybe seen that they are in’=~roximate agreement.

It shoul.dbe noted that the forward flight node line is somewhat
farther forward than the others. In the evaluation of flight node lines
it was found that considerablenose bending was taking place. As seen in
figure 18, the phase of the nose acceleration is shifted toward that of
the wing tip which indicates that nose bending wcmldhave to be treated
as a seyarate degree of freedom to duplicate the motion accurately.

.
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The evaluation of the dynamic response of a large flexible airplane
to elevator pulses over a tide range of flight conditions including Mach
numbers of 0.5 to 0.8 and altitudes of 15,000 to 35,0~ feet and compari-
sons with predicted dyuamic response at selected locations have led to the
following conclusions:

1. For practical purposes the dycmmic response of a fletible airplane
is invariant with the aeroelastic parameter q/p.

2. At constmt Mach number, the dynamic response peak of the wing
first-bending mode tends to increase in amplitude as altitude is increased.

3= Dynamical.analysis with one structural &gree of freedom (wing
first bending) and steady-state aerodynamic theory adequately predicts
the response through the frequency of the wing first-bending mode.

4. Dyuamical aualysis with two structural degrees of freedom (wing
first bending and fuselage first bending) and with steady-state aerody-

. nsmic theory gives a form of freqpency res~nse which approximawly cor-
responds with measured frequency responses through the frequency of the
fuselage first-bending mde.

5. Dynamical analysis with three structural degrees of freedom (wing
first bending, wing first torsion, md fuselage first bending) gives better
predictions of the ting distortion thsm the analysis tith two structural
degrees of freedom, but components of wing second bending and fuselage nose
bending till.have to be taken into account to obtain more accurate predic-
tions of the response at frequencies above the wing first-bending nmde
frequency.

6. Lines of small response of the wing first-bending mode and the
fuselage first-bending made measured in flight show fair correlation with
those predicted by dynamical analysis.

7. Node Mnes measured in ground tibration tests tith the particular
airplane support used did not agree with the lines of small response
measured in flight.

Ames Aeronautical Laboratory
National Adtisory Committee for Aemmautics

Moffett Field, Calif., Ott. 7, 1957



18 NACA TN 4147

JWPENDIX A

LIST OF SYMBOIS

CL

CM

%

D

Fj

‘Y

‘( )

M

s

T~

v

w

‘( )

%.

aij

b

bi

bij

lift coefficient

weighted lift coefficient at station i

pitching-moment coefficient

differential operator, -&

applied force at station j, positive downward

longitudinal moment of inertia, slug-ft2

gain of subscript quantity

total mass of airplane, slugs,or Mach number

wing area, sq ft

pitching velocity time constant, sec

veloc%ty, ft/sec

airplane gross weight, lb

vertical Usplacement of subscript station relative to space
reference plane, positive downward, ft

normalized coordinate of first structural mode

aerodynamic influence coefficient, weighted lift coefficient
at station i due to a unit angle of attack at station j

wing span,

normalized

structural
relative
(Because

.—

*

.

—

ft

coordinate of second structural mode

influence coefficient, deflection at station i, *
to reference plane, dxe to load at station j, ft lb
of symmetry, stiffness of both wings is included.(

“
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●

c

Ci

C.g.

g

h

z
.

‘( )

.

‘( )

q

‘( )

Y

.

‘( )

a

P

wing chord, ft

normalized coordinate of third structural mode

blz
wing mean aerodynamic chord, M.A.C., ~

J
c%

o

center of gratiky, percent E

acceleration due to gravity, 32.2 ft/sec2

deflection coordinate of second structural mode relative to
reference plme, positive downward, ft

deflection coordinate of third structural mode relative to
reference plane, positive downward, ft

mass at subscript station, slugs
(~c~yso;f symmetry, tiss of both wings at each *g station

normal acceleration at subscript station, positive downward,
gravity units

dyasmic pressure, lb/sq ft

longitudinal distance from center of gravity to subscript
quantity, wsitive when center of gravity is forward of
subscript qusmtity location, ft

deflection coordinate of first structural male relative to
reference plane, pcsitive downward, f%

total deflection of subscript station relative to reference
plane, positive downward, ft

angle of attack, radisns

ratio of rigid wing lift-curve slope at M = O to the rigid

wing slope at M, (B ~ ~ 1 - @cos2A )

elevator control deflection, positive downward, radians

damping ratio, dimensionless

spanwise coordinate, fraction of wing semispan

pitch angle at center of gravity, radians
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A

P

Q

()
S

w

‘f( )

‘( )

a

b

c

Cg

n

t

ti”

singleof sweepback

mass density of air, slugs/cu ft

yhase angle of output quantity minus
quadity

frequency, radians/see

undamped natuml frequency
radians/see

undmrped natural freqpency

of Slibscript

of subscript

phase angle of input

used as coordinate, radisrm/sec

Subscripts

first structural mode

second structural mode

third structural mode

center of gravity

nose

tail

wing tip

Dots are used to
.

example Z = ~ .

indicate

{}

[1

column matrix

square matrix

NACA TN 4147

free-free mode,

pseudocantilever MO(3E

differentiationwith respect to time; for

—

:

.

MATRICES

-. .- .-

.
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r“m

II square matrix with all except diagonal elements equal to zero

u row matrix

[1
1

transposed mtrix

{}
1 column matrix with all.elements equal to unity

[1I unit matrix

[1
-1

inverse matrix
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APPENDIX B

CALCULATION OF FREE-FREE MQDES

When an airplsae vibrates at structural tide frequencies in fki.ght,
the aerodynamic smd structural damying forces are ordinarily small comp-
ared to the inertial forces. For this reason, it might be e~ected that
the modes in flight would not differ greatly from those of the ad.rplsae
suspended in a vacuum (the free-free modes). Hence, a knowledge of the
free-free modes is valuable in selecting degrees of freedom in the
equations of motion.

Equations for free-free modes are also derived in reference 12, but
the form obtained here is a particularly useful form. In figure 9, the
vertical position of the ith discrete mass is given by:

z~ = Zcg + ex~ + Zi

where the center of gravity is taken as the reference point and small
angles are assumed (8 = sin f3).

(Bl)

.

.

.

If it is assumed that the airplane is vibrating sinusoidall.yin a
natural free mode, the force due to inertia of the jth discrete mass is:

Then, at an instsnt of time h accordance tith D’Alembert’s principle,
the system must be in a state of equilibrium as expressed by the following
equations: The sum of vertical forces must be equal to zero,

n

I
mjz~ + mcgzcg + %@cg+%) = o

j=l

and the sum of moments must be equal to zero,

n

(B3)

(B4)

where mments are taken about the center of gravity and the masses ~g
and ~ are introduced to take account of mass at the center of gravity

..

.
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and Shy ti~~y

from ti~. . .

coefficients of
of the fuselage
The masses ~g

of the airplane

23

attached mass ~. The masses ~g and ~ are seprated

for convenience. n the ~ple airplane, the influence

the nose of the airplsme were not known. Hence the part
forward of’the center of gravity was assumed to be rigid.
and ~ are selected to satisfy mass and moment of inertia
as follows:

n

M=
I mj+%g+%

j=1

n

‘Y = I ‘Jxj2 + ~xa=

J=l

(B5)

(B6)

(B7)

j=l

The deflection of the system of masses is given by the structural
influence coefficient matrix which was obtained from load-deflection
measurements of the wing (ref. 13) and an estimate of fuselage stiffhess
which was made from the results of the ground tibration tests (ref. 9)
snd the known mass distribution of the fuselage;

-F’}=M-k}

where i,j = 1,2,....n.

The structural deflections in the free-free mode are obtahed by
substituting the applied forces from equation (B2) into equation (B8)

{’i}E“f’hl[:jl -h}

Using equtions (Bl) and (B9), one obtains:

(B8)

(B9)

(B1O)
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If equation (B1O) 3.s

equations (B3), (B5), and

NACA TN

upremultipliedby ~ snd combined with

4147

(B7), the following equation may be obtained

‘Cg‘-$14FJW} (Bll)

MAlso, if equation (B1O) is premultiplied by ~~ and combined with

equations (B4), (B6), md (B7), the fol.lowtngeqmtion may be obtained

e‘-%++’d[:dk}

Substituting equations (Bll) and (B12) into equation (B1O), one
obtains

(B12)

which is the equation desired. The modal columns Zi and natural fre-

~;} {}{}
quencies ~ are the free-free modes of the ~rplane when ~ = ‘j .

This result may be achieved by iteration. When ~ is known, then the

position of the reference plane through the original center of ~avity
%y be determined from
result:

eq&tions (B3)‘throu@ (B7) with the fofiowing

.%ljZ~X~ - xaZalJz .
‘Cg = (B14)

‘c&a

%a%?mjzj - (mcg + %)zmjz~xj
(315)

‘cg%xa2

.

.

where j = 1,2,...,n.

.

.
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APPENmx c

DERIVA.TIONOF EQUATIONS OF BIITION

The equations of motion of a fl-ble atrplane in forced oscillations
about an equilibrium condition may be formulated through use of Lagrsnge’s
equation:

(cl)

The airpl-sme is assumed to be flying at constant velocity, ad all
motions about this state of equil.lbriumare assumed to be small. ~ order
to calculate the kinetic snd ptential energies in equation (Cl), the mass
distribution and elastic properties of the sd.rplanemust be known. It is
assumed that these properties are how in the form of discrete masses and
structural influence coefficients.

. The generalized forces (~) in the case of sn airplane are the aero-

dynamic forces arising from motions about equilibrium. The forces due to
. gratity, fiitial angle of attack, and initial structural deflection do not

enter into the problem because they are in equilibrium ad hence do no
work. The generalized coordinates ~ represent the degrees of freedom

of the C@mmic system. ~ a specific application, the mimimum number of
coordinates which adequately describe the nmtion are selected. illthis
analysis, it is assumed that the nmtion of the fletible airplane can be
described by the usual rigid airplane degrees of freedom, and three struc-
tural degrees of freedom measured in the SXLS system of figure 9. Any

arbitrary deflection of the structure
{}
Zi from the equilibrium position

iS given by:

{zi}={~ly+k}h ‘{~} z (C2)

‘iere{~}~-b},‘d{%}are the normalized deflections at the mass

stations of the three structural modes, y, h, and 2, respectively.

ti accordance with the coordinate system in figure 9, if the small.
. augle assumption 6 = sin 6 is made, the vertical velocity of a discrete

mass, ~, is:
. . .
zi=zcg+~e+++bifi +Cii (C3)
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Expression for A3rplane bertial Forces in
Terms of Coordinates

The kinetic energy of the system of discrete masses about the
equilibrium position is:

n

KE
I= ; %%2”+ * mcgcg 2 + $ ~(icg + x@)2 (C4)

i=l
-..

where the masses mcg and ~ have been introduced to satisfy equations
(B5), (~) , and (B7).

Using equations (C3) and (C4) and tsking the partial derivatives of
KE with respect to coordinate velocities, md also the time derivative,m
one may obtain

Zmiai

Zmi%xi

Z~ai2

&.E/ahcg

&E/&?)

aKE/aj

aKE/ali

alai

Zmibi z~c~

ZhibiXi Ziqcixi

Zmi~bi ZIniaiCi

,.
?‘Cg
..
e

Y

h
..
z

.

.

.

ForcesExpression for Airplane Spring

The potential energy of the deflected airplane is given by:

w‘Hzdhd’-h} (C6)

(C7)

which becomes

m=+’@r-tw “
*

.
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for the particular deflection in coordinate y. Taking the prtial
derivative with respect to y, one obtains:

27

(c8)

Since potential energy as used herein must depend only on relative
displacements within an ucoupled mode, eqpation (c8) can be written in
terms of the undsmped natural frequency of a ~articul.ardegree of freedom.
From equations (Cl), (C~), and (c8), the equation for free vibration in
the coordinate y is:

‘%%2’+14WT’{K}’‘0 (C9)

which has solutions y= Asin~t. Solving for ~a in eqyation (C9)

aud combining with equation (C8), one obtains:

(cl”)

Similar expressions for potential energy may be found for the other
degrees of freedom.

Use of Free-Free lbde In Calculation of

The natural frequency ~a in equation (C1O) may

[1

-1

without resorting to bij if the structural degree

%a

be calculated

{1
of freedom ~ y

is obtained from the structural deformation of a free-free mde such as
described in Appendix B. k this case the potential energy of the free-
free mode is ~ven by:

(cIL)

where the

deflection
%, Zcg, ~d e are solutions of the ath free-free mo&. The

about the deflection reference plane (fig. 9) is:
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{tai y

where y is

structure is

LJ

the deflection

constrained to

NACA TN 4147

‘H - ~gF} - {~}
(Cw) -

.

givenby y = Z~R-- Zcg - 13x3R. If the

{1
vibrate in the form ai with the deflection

reference plane fixed in space, then the potential energy is:

(C13)

When equation (C12) is satisfied, the potential energy is the same whether
the airplane is vibrating in the free-free mode or with the deflection
reference plane fixed. Equating (Cll) and (C13) and solving for ~a
gives:

1 2 + i._Jzcg+ xae)2+zi2 + ‘.&Cg
%la ‘ *a

Zqai2y2
(C14) --

.

This equation expresses the characteristic difference in frequency of a
free-free and a cantilever mo&. Ordinarily, the free-free vibration of
a given mile of deformation occurs at a much higher frequency than the
cantilever one. Wnen the fuselage bending is used as a separate degree
of.freedom, then the potential ener~ of fuselage bending in the free-free
mode should be subtracted out of equation (C14) as follows:

.

where
which

PEf is the potential ener~ of the fuselage in the free-free mde
satisfies equation (CI..2).
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Equations of Motion With Air Forces Unspecified

29

Using equations (Cl), (~5),and (C1O),one may obtain

Expression for Aero@mnic Forces

.

(c16)

me genertized forces Qi in equation (c16) consist of the
aero~amic forces. For convenience in calculation of these forces,
the angle-of-attack coordinate, m,(fig. 9) is introduced here, and later
in the report it is transformed to the coordinates of the preceding equa-
tions. The mass stations were origintiy selected to be compatible with
the aerodynamic lifts. From reference 14, which is a development from
Weissinger’s steady-state ldfting Hne theory, the aerodynamic influence
coefficients may be obtained as follows

{~}= [a”d{~} y ‘7’ ‘1~2)3>4
(C17)

{}
Solving for ~ gives .,

{~}=”[a~T’+”}
(c18)

{1
The elements of ~ are the loading coefficients cZc/2b at

stations 1, 2, 3, and 4, respectively, due to any arbitrary angle-of-
attack distribution. The total lift on the wing is given by:

where G(~) is the function

J

1

L = b2q G(q)dq (C19)

o

~g on the value of ~ at the nth station.
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This integration may be performed by Mfithopp’s quadrature method.
In matrix form, the integration is performed by premul.tiplyingequa-
tion (c18) by a weimting matrix. Also, dividing by qS to obtain a
coefficient.form gives

.

.

+%}= (g.) [q-’{%} (C,o,

{}
The column ~ is thus weighted so that a smnuation with deflection

coefficients gives a quadrature solution of the integra3 of the product of
the spm.wise lift function and the deflection function. Also the summation

{}
of the elements of C!% gives the lift coefficient of the wing due to the

{}

.-
angl..e-of-attack distribution I&v .

.

In order to tske account of chordwise loadings, the lift was ditided
into two components at each spanwise station, one component at the front
spar end one at the rear spar. These were selected in such a msmner as to
place the chordwise center of pressure at the 25-percent chord line. This
puts 80 percent of the lift on the front spar and 20 percent on the rear
spar. Equation (C20) may then be mittem as

+~}= F4b}
(C21)

J = 1,2,3,4

i = M?,lR,2F,2R,3F,3R,4F,kR

.

.
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.
where

I
0.8 0 0

.2 0 0

0.8 0

0
[ai,]=@) 0

.2 0

00 0.8

0 0 .2

1000

000

0-

0

0

0

0

0

0.8

.2

[

0.15Q2

o

0

0

0 0 0-

0.2776 6 0

0 0.3628 0

0 0 0.1964
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[1

.1

am

which is the aerodynamic influemce coefficient matrix in a form suitable
for calculation of-generaUzed forces. Mach number effects in accordance.
with the Frandtl-Glauert rule are included in the values of’ am from
reference 14. This means that an aerodynamic influence coefficient matrix

. should be calculated for each Mach number. However, in many cases, Mach

Nnumber effects may be adequately @ken into account by multiplying ~j

for a Mach number of zero by l/B.
La

The moment coefficients are gl.venby:

G=J=mkl
(C22)

A generalized force is the work done per unit displacement when the
system uudergoes a virtual displacement of one of the degrees of freedom.
ti we following eqyations for generalized forces, small angles are assumed
so that lift forces can be regarded as acting in the direction of the dis-
placements. ~ a displacement of the Z=g coordinate, alll of the lift
forces do work. Hence:

(c23)

.
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“

where the terms C%, C~, C%, CLb are the rigid airplame c%sriwftiv$s.

equation (C21) where <a.v} is

‘Sphcemen’s-h})$1‘d

the angle of attack

{}
Ci , respectively.

at control points due to
-.

In a 6 displacement,work is tine by all of the moments. Hence:

C@ = [(~D+C 1%)G+G@+(%#+Cmy)y + (%%~%q)h + (Cm~~Cmz) z + cmb~ qs~

were M, ~, C!ma,%5 are rigid airplane

Cmy, Cmy, C%, ~, Gni, CmZ are ob~ned bY

ic2k)

derivatives and the terms

{)
summing C% in equa-

.-

{}
tion (C22), using the appropriate respective angles of attack ~ as--
noted above.

In a displacement of the mode y, work is done by all of the forces
which are displaced. For example, the work per unit of y done by the
lift due to u is given by . .—

(c25)

where C2(~) and a(~) are the distributed functions of lift coefficient
snd mode of deformation. This integral is similar to the one in equa-
tion (C19) and is also amenable to solution %y ltulthopp’s quadrature

.

method. Since the integrating factors are included in the aerodynamic
influence coefficient matrix, then the work done by lift due to u is
Simply given by:

s=‘Sbbd+}a = ‘s14&Ja

—
.—

or

3r
Aw—=qs
M 1 c%%”

i=lf

(c26)
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The generalizedforce is

33

and Si?llikly for the other generalized forces

%=

Qz =

@c%ici)i4cL%.ci) ’4cL&.%)’4cLzici)2 <=L5ici)51 “2’)

Again using the small angle assum@j.on, one may relate the vertical
acceleration to ~ and a by the follo~ng

z = -V(6 - a)

Eqmtions (c16), (c23), (c24), (c27),-. .

transfo?mlationof coordinates.

(’30)

(,28), (c29),ala (,30)now
define the equations of motion. Further development depends on the exact
form in which the equations are desired.

Final Equations of Motion in Terms of Specific Coordinates

D the application to the B-47 airplane, the three structural degrees
of freedom selected were wing bending (y), wing torsion (Z), and fuselage
bending (h). The wing bending mode was obtained by removing the fuselage-



-. .- — .—

bending compment from the first free-freeW*. The torsion nmde was obt~ed by rsmcwing the w

fuselage- and wing-bendingcompxmnts from tie second free-freemxk. Hence, terms ~~b~ci =d
.!=

Zrq~bi become zero. Also, the terms C .~ ma ~, w~ ~,resent f.rces at the tai., do not

enter Into equationsin y ma z. Dommash at the Ml from tie Mfi due to wbg structural modes

was found to be small smd was neglected. Equations of mtion used in the analysisare:

* . #

!3

,
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where 1/qS = K=, l/qS5 = K2 and ~ S~tiOIIS , Z, are taken over stations
IJ?,~, 2F, 2R, Y, 3, 5, 6, and 7. The *g rOOt stiti~s, 4F ~d 4R,
do not deflect in coordinates y, h, and 1 ~d, hence do not enter into
the summations, but the lift at these stations is included in stability
derivatives such as ~, ~h, etc.

The acceleration at any point i on the airplane is @ven by:

(c32) “

Deflection check.- Because of the many terms involved, it is advisable
to check the results obtained from the equations of mtion. This can be
done as foll.ows: From solution of equation (C31), calculate the wing
deflection for a particular frequency (tie substitution D = iu). Usually
a frequency corresponding to a peak in the frequency res~nse is used
because these are the mcst important points. The deflection is given by

-Fl={~}y+{~}z (~33)

Through use of the structural and aerodynamic influence coefficient

matrices,
.

““ -F}, {’4, -@}>
calculate deflections due to u, e, e, ncg,

md sum. The total deflections due to the loads should check with the
initial deflection in equation (C33). Since the influence coefficient
matrices are based on ei@t degrees of freedom, the deflection check indi-
cates whether or not the three degrees of freedom selected are as adequate
as eight degrees of freedom at the frequency considered.
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TABLE I.- FLIGHT-TEST CONDITIONS
●

✎

Flight r Run
number number Altitude ~~;:r ~:;gt I#i06 C.g. ‘P

18 6 14,900 0.50 1o3,400 1.23 22.8 0.91
18 15,000

● 55 103,100 1.23 22.8 .88
18 i 15,100 .59 102,~ 1.23 22.7 ● 86
18 10 15,100 .67 101,600 1.21 21.9 .82
18 U 15,100 ●m 100,700 1.2s 21.9 .80
18 12- 15,200 .76 100,300 1.21 22.2 .76
U 19 20,000

● 59 106,100 1.25 21.2 ● 86
17 15 20,500 ●P 104,200 1.24 20.9 .80
15 7 25,500 .49 U8 ,700 1.36 20.8 .91
15 25,200 .60 119,500 1.37 21.2 .86
15 ; 25,100 .66 120,000 1.37 21.1 .83
17 10 24,800 .70 108,100 1.27 19.9 .80
17 12 25,380 .79 106,400 1.25 19.6 .74
3 6 29,900 .p 125,goo 1.25 20.6 .80

18 34,40Q .60 11o,ooo 1.29 21.3 *86
; 15 36,000 .72 ill,100 1.30 =.6 =79
5 13 35,300 .80 lU,$X)O 1.30 21.7 .74

lBased on
C%M*/c%

from reference 14.

.

.
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TABLE II.- THYSICAL CHARACTERISTICS

[

18.4 8.9 3.1 1.8
4.6 .8 .4

[1
3.12 $:: 24.4 4.4

%Lj =&
.78 13.7 6.1 1.1
.96 6.8 ~ 29
.24 1.7 24 7

I .4 .& z.8 ~
1 .15 3.2 13.4

[1 1b~j.—
24,cw

.

% = 3.3
tsil

m?
2.34!36
2.4598
1.2134
1.3309
.2447
;~::

I1.61370

m
2.38ko
2.5920
1.249
1.4300
.2307
.3339
.0898

1.64g8
o

2F

1.1943
1.2430
.7419
.@81
.1765
.=6
.X286
.9208
0

2R

L2~4
1.4057
.7795
.9005
.U63
.2398
.0659
.9495
0

L.JL

3F
0.2302
.23S0
.1769
.1804
.0659
.0705
.0596
,2025

0

39

USED IN AN&GYSIS

0.2730
.2940
.2051
.23U
.0580
.0931
.0101
.2374
0

484 206

5
0.lp7
.1497
.1383
.11.02
.0767
.0396
.I.273
.1528
0

6
L 6315
L697u
.9263
;%:

.2464

.1444
1.1859
0

264
J

w = 19.82 23.12 10.86 1s.06 -2.53 2.98 -1o.08 14.22 47 I
La I.. -1

m~ = 0.953 1 0.576 0.623 0.141 O.l@ 0.096 O.m o
1

mb%=O o 0 0 0 0 0 01
1

111Ci = 0.32 -.32 0.316 -0.3160.267-0.267 I 0.32 0
1

CMmge in stabilizer angle = 0.0342° per 1000 D tail load

IY = 1,330,000Sh@?t2

M = 3,580Shl&3

~ == 274 Shl@

~ = 1,930slugs

* = 47.3feet

7
0
0
0
0
0
0
0

~.328
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Figure 16. - Amplitude-phase plot of predicted and measured accelerations
at wing first-bending mode frequency; w = 8.9 radiem/sec.
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